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Effect of symmetry on volume conserving surface models
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We study the effect of symmetry on volume conserving models without deposition and evaporation. By
using the master equation approach, we identify two types of stochastic continuum equation with a conserva-
tive noise, depending on the symmetry of hopping rate in diffusion rules. In the model with symmetric hopping
rate, a Laplacian term is essentially absent from the continuum equation. The dynamic scaling of this model is
thus determined by the nonlinear fourth order equation with a conservative noise. When the symmetry is
broken, a Laplacian term may be present, so the asymptotic scaling behavior is governed by the Laplacian term
with nonzero coefficient. We verify this result by investigating a simple discrete model analytically.
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[. INTRODUCTION not by equilibrium fluctuations, but rather by some external
agent. One is a conservative variant of the RSOS model
For the past decade the kinetic roughening of nonequilibf12,13 and another is the mobility-restricted diffusion model
rium surface growth has attracted much interest theoreticallj14,15. Numerical simulations have shown that these mod-
and experimentally. The kinetic roughening properties ofels are described by the continuum equations with a conser-
surfaces can be classified into universality classes by obtaiyative noise,n(x,t), which has the following properties:
ing the critical exponents, which determine the asymptotic
scaling behavior of the surface on a large length scale and in {(7:(x,1))=0, @
a long time limit. For surface growth, various discrete mod- L , ,
els ar?d stochastic continuum gquations have been studied by (ne(X 07X, 1)) = =DV 2o(x=X") 8(t—t").

the use of computer simulations, symmetry argumentSype inteqral of the conservative noise over the entire surface

renormalization-group analyses, and direct numerical int€zemains at zero at every moment so that the volume conser-
grations[1]. One can establish the correspondence between\;aation requirement is automatically satisfied

continuum equation and a discrete model numerically or ana- |, ihis Brief Report, we study the volume conserving sur-
lytically. Many studies are devoted to numerical S|mulat|onsface model, in which no particles are deposited but only a

of discrete models and compare the scaling exponents whicfy¢_giffusion occurs on the surface. By using the master

obtain with corresponding continuum equations. In the a”aéquation approach, we obtain two kinds of stochastic con-

lytical appr_oaches, the_contir_luum equation is derived fron,, ,\;m equations corresponding to discrete models. We
tEe dynamic rule of a g(ljven discrete model,dm(t))stly ba;ed ?('%how that the symmetry in hopping rate plays a crucial role
the master equation description proposed by Vvedensky, yhe getermination of continuous stochastic equations. We

etal. for a solid-on-solid model with Arrhenius hopping dy- 554 consider a simple discrete model to verify the effect of
namics[2]. This master equation approach has been Succes§ymmetry in hopping rate.

fully applied to the derivation of continuous stochastic equa-
tions for many discrete models, including the restricted solid-
on—solid(RSOyS model[3], the Wolf-ViIIa?n model and Das Il. DERIVATION OF STOCHASTIC CONTINUUM
Sarma—Tamborenea modg#,5], the conserved RSOS EQUATIONS
model[6], the ballistic mode[7], and the erosion modés]. According to the master equation approdeh the con-
However, this method fails for an unrestricted SOS diffusiontinuous stochastic Langevin equation is written as
model with Glauber dynamic®]. Uncertainty in the regu-
larization process is also discusgdd. ah(x,t) 1)

The growth process of all discrete models mentioned a Ki#(h(x, 1)+ 7(x1), @
above is constituted by the deposition of particles, inherently
generating a nonconservative noise. There are few attempighere Ki(l) is the first moment of the transition matrix
to describe the surface reconstruction when no particles al\ﬂ/(H,H’), 7 represents the noise with zero mean, and the

deposited from external sources. Without depositiop flux, thQ]oise covariance is given by the second transition moment
surface could be reconstructed by thermal fluctuations or by

some external agent such as an electric fiald. A recent (n(x,t)n(x’,t’))zKi(jz)(h(x,t))é(t—t’). 3
study of the surface electromigration induced by an alternat-

ing electric field explicitly shows the smoothening effect of Equationg2) and(3) describe the evolution of heigh(x,t)
surfaces by a net downhill currefitl]. Two types of dis- at sitex as a function of height difference between neighbor-
crete model for the volume conserving surface fluctuationsng sites and determine the dynamics of the model. Once the
have been studied. In the model a surface diffusion is drivergxplicit form of the transition matrix¥(H,H") between the
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configurationH and the configuratiotd’ of the surface is P

obtained from the dynamic rule of a discrete model, the cor- W =2 Co(x)(Fa)" (8
responding continuum equation and the noise covariance can n=0

be derived explicitly.

In the volume conserving surface models, the total num
ber of particles existing on the surface is always conserve
without deposition and evaporation. Whenever the position = KCo(x) (£a)ktn
of a particle changes, any decrease of the height at one site Wi = n — ,
must be accompanied by an increase of the same height at k=0 gx¥ k!
another site on the surface. If we allow one particle move- o .
ment only, the change of height is given by one unit latticeVheré Cn(x) denotes all combinations of any possible
spacinga. This is always true for any volume conserving Nth ~ space 2der|vat|2ves; f°r3 examsple,Co=gonstC1
surface model so that the transition matrix has the following:thCZZ[V h,(Vh)°],C3=[V*h,(Vh)*,V(Vh)], C,
form: =[V*h,(Vh)* V2h(Vh)2,V(Vh)3], etc.

From Egs.(5), (8), and(9), we finally obtain the follow-
ing continuum equation

Other hopping rates from site- 1 to sitei, w;, ; andw;" ,,
gan be obtained by the Taylor expansion as follows:

(€)

1
W(HH") == 2 [w 8(h{ .hi—a)8(h/, 1 .hi 1 +a)

h(x,t) 2a & " oKC,_W(x) a”
_ , , S — — e (X 1), (10
w80 ) SN, 1y a)] 2 & g kD, (10
n:even
x |1 a(hi,hy), (4)  where the noise covariance is also obtained from Egjs.

J#LIHL (8), and(9) as follows:
wherer is the tir;ne scale and the nefrest neighbor hopping is (X, (X" 1)) = =D V28(x—x') 8(t—t'), (11)
assumed. They;” (w; ) andw;,; (w;_;) are hopping rates
from sitei to sitei+1 (i—1), and from sité +1 (i—1) to  with D,=2Cya’/ 7, up to O(a®). This form of the noise
site i, respectively. These hopping rates depend on the mocovariance demonstrates that the continuum equation for the
phology of the surfaces, more explicitly, on the height dif- volume conserving model is indeed given, not by a noncon-
ference between two hopping sites and also on the diffusioservative white noise, but rather by a conservative noise. The
rules of a given model. From E¢4), we obtain the first and resulting continuum equation has several terms such as
second moments aNV(H,H') as follows: V2h,V4h,V2(Vh)?2, andV(Vh)2 up to the fourth order. Note
that the nonlinearity, {h)?, is essentially absent. If the co-
efficient of the Laplacian term is positive, the Laplacian term
determines the asymptotic scaling behavior of the model.
For the model with aymmetrichopping rate, in which a

@) " a2 L particle at one site hops to another site with equal probabil-

Kij'=aki o j— — LW + W )( 8+~ 6 j) ity, i.e., w =w, , w',;=w,,,, andw;" ;=w;_,, the hop-
ping rates are given by

a _ _
Ki(l):;(WHl_Wi W W), ©)

+(W W) (81— 6 )], (6) "
where &, ; is the Kronecker delta. The above form of the wir= nZO Ca(x)a’,
transition matrix and its moments is a general one for vol- n:even
ume conserving surface models. Consequently, by obtaining . (12)
the hopping ratesv," for a certain discrete model, we can W= F*Cr(x) ak+"(+1)k
derive the discrete Langevin equation explicitly. e gxk kT
We now show that the corresponding continuous stochas- n:even

tic equations for the volume conserving surface models de
pend on the symmetry of hopping rate. As in Rief], we tion
suppose that the height difference can be replaced by a

In this case, we finally obtain the following continuum equa-

lsor\r,]V(;(?th function in the limit of lattice constaat—0 as fol- Jh(x,t) B 2a % niz akCn,k(x) an N t
) ot - T & &S an k! 7]c(xu )1
% (+a)k(9kh n:evenk:even (13)
hiil(t)_hi(t):kzl Kk : (7
- COX ] ia with the same noise covariance as Efjl). This continuum

. equation hasv*h and V2(Vh)? terms as the lowest order.
Since the hopping rates; -, depend on the height difference The well-known Laplacian terV2h and the nonlinearity
between two hopping sites, we can regard as a continu-  V(Vh)?, associated with the Edwards-Wilkins¢BW) uni-
ous function of height differences; .., —h;, described by versality class, is essentially absent. The model with a sym-
Eq. (7). We thus express;” as a sum of products of various metric hopping rate thus is described by the fourth order
space derivatives di(x), continuum equation with a conservative noise.
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We prove analytically that the corresponding continuum a’®
equation to the volume conserving surface models can be )\22=E_(2A2—A§),
generally described by either E4.0) or Eq.(13), depending (18
on the symmetry of hopping rate in the diffusion rules of the as
model. The model introduced by Raet al.[13] satisfies Eq. (X, D) (X' 1)) =— —V28(x—x") 8(t—t"),
T

(10), while the Sun-Guo-Grant model obeys ER) without
the nonlinearityv?(Vh)? because this model obeys detailed 5 :
balance and the symmety(x,t)— —h(x,t). The explicit up to O(a>). From the fact thaA;>0 andA, is very small

expression of both equations will be determined through th@nd negligible, we hav&>0 andA,,<0. This equation
regularization procedure when the diffusion rules for gcorresponds to the conserved Kardar-Parisi-Zhang equation
model are given. with a conservative noisgl2]. The predicted critical expo-

nents area=(2—d)/3 andz=(10+d)/3 for the substrate
dimensiond [16]. The critical exponents are determined
through the surface widtkV(L,t), which can be described
To identify the result of the preceding section, we inves-by the dynamic scaling formW(L,t)=L“F(t/L?). Here
tigate a simple discrete model suggested by Krigj. The L, a, z, andF are the system size, the roughness exponent,
diffusion rule is as follows: A sité is chosen at random. If the dynamic exponentz& o/ 8,8 is the growth exponept

Ill. VOLUME CONSERVING MODELS

the surface configuration satisfies the condition and the scaling function, respectively. Simulation results for
this discrete model are consistent with the predicted values
hi;;>h; or hj_;>h, (14)  of exponents. See Ref14] for d=1 and Ref.[15] for d
=2 and 3.

then the particle at siteis regarded as immobile, and a new  As a discrete model fahe asymmetric hopping rateve

site is chosen. If it does not, the particle at site regarded  allow a mobile particle to hop only to one of the nearest
as a mobile one, no matter what the neighboring configuraneighboring sites which has a lower height. In this way, we
tion is. In this model, any mobile particles are allowed to hopcan break the symmetry in hopping rate. If both heights of
from an existing site to another site. Especially, a particle inthe nearest neighbors are lower than that of the selected site,

a completely flat surface is always regarded as a mobile papne site is selected randomly among them. From these rules,
ticle in order to generate a nonequilibrium contribution to thethe hopping ratesv:” are given by
surface diffusion process where no particles are deposited.

As a discret_e mod_el fothe symmetric hopping rateve w=6(hj—hi=1)8(hj—hi=1)
allow any mobile particle to hop to one of the nearest neigh- )
bors randomly. The hopping rates™ for this model can be +[1-0(hi=1—hizy)+30(hjz1—hiz1)]. (19
represented by a simple combination of the unit step function ] . ] )
o(x) as follows: Since the above hopping rates contain ad function, we

will employ another regularization functidd]:

1
W == 0(h—hi_1) 8(hi— hy . ). (15 .
2 1 ! a(x)zg‘,o AX, (20

Once hopping rates;~ are written by the step function, the

discrete functiorh; has to be replaced by a smooth function whereA e (1/2,1), A; >0, andA,<0. This choice can dis-
h(x,t) with x=ia at the macroscopic scale through a regu-tinguish the situations where the argument of the step func-
larization procedure. Using the regularization procedurdion is zero.

from the literaturd 2,3,5,8, the step function can be approxi-  From Egs.(5), (19), and (20), we obtain the stochastic
mated by an analytic shifted hyperbolic tangent function,continuum equation, up to the fourth order, as follows:
which is expanded in the Taylor series

ah(x,t
o i?t ):szh_KV4h+)\22V2(Vh)2
0(x)=1+ >, AXK, (16)
k=1 N 13V (Vh)3+ 7(x,1), (21)
whereA; >0, Az<0,..., andA;,A,, ... are very small \yith the same noise covariance as Etg). The coefficients
and negligible. are given by
Combining Eqs(5), (15), and(16), we obtain the follow-
ing continuum equation, up to the fourth order: 4a3
v=—A~A3%A,,
ah(x,t) . ) ) T
= KV VA(Vh2+ g (x, ), (17) .
a
. _ . _ K=~ = (8AFA,—3AcA,), (22
where the coefficients and the noise covariance are given by 67
a® a®

K=2-Aq, N22=5-(2A0A;— AT~ 4A0AT),
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a’ ) s tinuum equation through the master equation approach. We
Mz=——(8AgAs T ArAr +4AcAI A~ 2A). then showed that the form of continuum equation depends on
the symmetry of hopping rate in the stochastic diffusion
By using the conventional regularization function, Etg),  rules. In the discrete model with symmetric hopping rate, the
we can also obtain the same continuum equation with theesulting continuum equation does not possess a Laplacian
coefficients if we letAp=1 in Eq. (22). However, for the term, but it is the nonlinear fourth order continuum equation
model with the asymmetric hopping rate which contain®$ a with a conservative noise. If the symmetry in hopping rate is
function, the use of regularization function Eg0) is proper  broken, a Laplacian term appears in the corresponding
because the regularization function Ef6) does not allow Langevin equation. In this case, if the coefficient of the La-
us to define theS function[4]. placian term is positive, the Laplacian term will be relevant
SinceAqe(1/2,1), A;>0, andA,<0, we haver>0, K so that the asymptotic scaling behavior of the model belongs
<0,\5,<0, and\13<0 so that the dynamic scaling behav- to that of the EW equation with a conservative noise. As a
ior is determined solely by the Laplacian term with a positivespecific example, we investigated a simple discrete model
coefficient. The model for an asymmetric hopping rate be{14,15 analytically. From the diffusion rules of the model,
longs to the same universality class as that of the EW equawve explicitly derived two corresponding continuum equa-
tion with a conservative noise. The critical exponents ardions; the conserved Kardar-Parisi-Zhang equation with a
given asa=—d/2 andB8=—d/4 [17]. Note that the values conservative noise for the model with symmetric hopping
of the growth (3) and the roughnessa) exponents are rate, and the Edwards-Wilkinson equation with a conserva-
negative in all substrate dimensiodsso that the surface is tive noise for the model with asymmetric hopping rate.
in fact flat. More information for the negative exponents can
be found elsewhergl5,18§.
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