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Effect of symmetry on volume conserving surface models

Youngkyun Jung and In-mook Kim
Department of Physics, Korea University, Seoul 136-701, Korea

~Received 19 January 1999!

We study the effect of symmetry on volume conserving models without deposition and evaporation. By
using the master equation approach, we identify two types of stochastic continuum equation with a conserva-
tive noise, depending on the symmetry of hopping rate in diffusion rules. In the model with symmetric hopping
rate, a Laplacian term is essentially absent from the continuum equation. The dynamic scaling of this model is
thus determined by the nonlinear fourth order equation with a conservative noise. When the symmetry is
broken, a Laplacian term may be present, so the asymptotic scaling behavior is governed by the Laplacian term
with nonzero coefficient. We verify this result by investigating a simple discrete model analytically.
@S1063-651X~99!08806-6#
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I. INTRODUCTION

For the past decade the kinetic roughening of nonequ
rium surface growth has attracted much interest theoretic
and experimentally. The kinetic roughening properties
surfaces can be classified into universality classes by ob
ing the critical exponents, which determine the asympto
scaling behavior of the surface on a large length scale an
a long time limit. For surface growth, various discrete mo
els and stochastic continuum equations have been studie
the use of computer simulations, symmetry argume
renormalization-group analyses, and direct numerical in
grations@1#. One can establish the correspondence betwe
continuum equation and a discrete model numerically or a
lytically. Many studies are devoted to numerical simulatio
of discrete models and compare the scaling exponents w
obtain with corresponding continuum equations. In the a
lytical approaches, the continuum equation is derived fr
the dynamic rule of a given discrete model, mostly based
the master equation description proposed by Vveden
et al. for a solid-on-solid model with Arrhenius hopping dy
namics@2#. This master equation approach has been succ
fully applied to the derivation of continuous stochastic eq
tions for many discrete models, including the restricted so
on-solid~RSOS! model@3#, the Wolf-Villain model and Das
Sarma–Tamborenea model@4,5#, the conserved RSOS
model@6#, the ballistic model@7#, and the erosion model@8#.
However, this method fails for an unrestricted SOS diffus
model with Glauber dynamics@9#. Uncertainty in the regu-
larization process is also discussed@4#.

The growth process of all discrete models mention
above is constituted by the deposition of particles, inhere
generating a nonconservative noise. There are few attem
to describe the surface reconstruction when no particles
deposited from external sources. Without deposition flux,
surface could be reconstructed by thermal fluctuations o
some external agent such as an electric field@10#. A recent
study of the surface electromigration induced by an altern
ing electric field explicitly shows the smoothening effect
surfaces by a net downhill current@11#. Two types of dis-
crete model for the volume conserving surface fluctuati
have been studied. In the model a surface diffusion is driv
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not by equilibrium fluctuations, but rather by some extern
agent. One is a conservative variant of the RSOS mo
@12,13# and another is the mobility-restricted diffusion mod
@14,15#. Numerical simulations have shown that these mo
els are described by the continuum equations with a con
vative noise,hc(x,t), which has the following properties:

^hc~x,t !&50,
~1!

^hc~x,t !hc~x8,t8!&52Dc¹
2d~x2x8!d~ t2t8!.

The integral of the conservative noise over the entire surf
remains at zero at every moment so that the volume con
vation requirement is automatically satisfied.

In this Brief Report, we study the volume conserving su
face model, in which no particles are deposited but onl
self-diffusion occurs on the surface. By using the mas
equation approach, we obtain two kinds of stochastic c
tinuum equations corresponding to discrete models.
show that the symmetry in hopping rate plays a crucial r
in the determination of continuous stochastic equations.
also consider a simple discrete model to verify the effect
symmetry in hopping rate.

II. DERIVATION OF STOCHASTIC CONTINUUM
EQUATIONS

According to the master equation approach@2#, the con-
tinuous stochastic Langevin equation is written as

]h~x,t !

]t
5Ki

(1)
„h~x,t !…1h~x,t !, ~2!

where Ki
(1) is the first moment of the transition matri

W(H,H8), h represents the noise with zero mean, and
noise covariance is given by the second transition mome

^h~x,t !h~x8,t8!&5Ki j
(2)
„h~x,t !…d~ t2t8!. ~3!

Equations~2! and~3! describe the evolution of heighth(x,t)
at sitex as a function of height difference between neighb
ing sites and determine the dynamics of the model. Once
explicit form of the transition matrixW(H,H8) between the
7224 ©1999 The American Physical Society
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configurationH and the configurationH8 of the surface is
obtained from the dynamic rule of a discrete model, the c
responding continuum equation and the noise covariance
be derived explicitly.

In the volume conserving surface models, the total nu
ber of particles existing on the surface is always conser
without deposition and evaporation. Whenever the posit
of a particle changes, any decrease of the height at one
must be accompanied by an increase of the same heig
another site on the surface. If we allow one particle mo
ment only, the change of height is given by one unit latt
spacinga. This is always true for any volume conservin
surface model so that the transition matrix has the follow
form:

W~H,H8!5
1

t (
i

@wi
1d~hi8 ,hi2a!d~hi 118 ,hi 111a!

1wi 11
2 d~hi8 ,hi1a!d~hi 118 ,hi 112a!#

3 )
j Þ i ,i 11

d~hj8 ,hj !, ~4!

wheret is the time scale and the nearest neighbor hoppin
assumed. Thewi

1 (wi
2) andwi 11

2 (wi 21
1 ) are hopping rates

from site i to site i 11 (i 21), and from sitei 11 (i 21) to
site i, respectively. These hopping rates depend on the m
phology of the surfaces, more explicitly, on the height d
ference between two hopping sites and also on the diffus
rules of a given model. From Eq.~4!, we obtain the first and
second moments ofW(H,H8) as follows:

Ki
(1)5

a

t
~wi 11

2 2wi
22wi

11wi 21
1 !, ~5!

Ki j
(2)5aKi

(1)d i , j2
a2

t
@~wi

11wj
2!~d i 11,j2d i , j !

1~wj
11wi

2!~d i 21,j2d i , j !#, ~6!

where d i , j is the Kronecker delta. The above form of th
transition matrix and its moments is a general one for v
ume conserving surface models. Consequently, by obtai
the hopping rateswi

6 for a certain discrete model, we ca
derive the discrete Langevin equation explicitly.

We now show that the corresponding continuous stoch
tic equations for the volume conserving surface models
pend on the symmetry of hopping rate. As in Ref.@4#, we
suppose that the height difference can be replaced b
smooth function in the limit of lattice constanta→0 as fol-
lows:

hi 61~ t !2hi~ t !5 (
k51

`
~6a!k

k!

]kh

]xk U
x5 ia

. ~7!

Since the hopping rates,wi
6 , depend on the height differenc

between two hopping sites, we can regardwi
6 as a continu-

ous function of height differences,hi 612hi , described by
Eq. ~7!. We thus expresswi

6 as a sum of products of variou
space derivatives ofh(x),
r-
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65 (

n50

`

Cn~x!~7a!n. ~8!

Other hopping rates from sitei 61 to sitei , wi 11
2 andwi 21

1 ,
can be obtained by the Taylor expansion as follows:

wi 61
7 5 (

k,n50

`
]kCn~x!

]xk

~6a!k1n

k!
, ~9!

where Cn(x) denotes all combinations of any possib
nth space derivatives; for example,C05const,C1
5“h,C25@¹2h,(“h)2#,C35@¹3h,(“h)3,“(“h)2#, C4
5@¹4h,(“h)4,¹2h(“h)2,“(“h)3#, etc.

From Eqs.~5!, ~8!, and~9!, we finally obtain the follow-
ing continuum equation

]h~x,t !

]t
5

2a

t (
n52

n:even

`

(
k51

n21
]kCn2k~x!

]xk

an

k!
1hc~x,t !, ~10!

where the noise covariance is also obtained from Eqs.~6!,
~8!, and~9! as follows:

^hc~x,t !hc~x8,t8!&52Dc¹
2d~x2x8!d~ t2t8!, ~11!

with Dc52C0a5/t, up to O(a5). This form of the noise
covariance demonstrates that the continuum equation for
volume conserving model is indeed given, not by a nonc
servative white noise, but rather by a conservative noise.
resulting continuum equation has several terms such
¹2h,¹4h,¹2(¹h)2, and¹(¹h)3 up to the fourth order. Note
that the nonlinearity, (¹h)2, is essentially absent. If the co
efficient of the Laplacian term is positive, the Laplacian te
determines the asymptotic scaling behavior of the model

For the model with asymmetrichopping rate, in which a
particle at one site hops to another site with equal proba
ity, i.e., wi

15wi
2 , wi 11

1 5wi 11
2 , andwi 21

1 5wi 21
2 , the hop-

ping rates are given by

wi
65 (

n50
n:even

`

Cn~x!an,

~12!

wi 61
6 5 (

k,n50
n:even

`
]kCn~x!

]xk

ak1n

k!
~61!k.

In this case, we finally obtain the following continuum equ
tion

]h~x,t !

]t
5

2a

t (
n54

n:even

`

(
k52

k:even

n22
]kCn2k~x!

]xk

an

k!
1hc~x,t !,

~13!

with the same noise covariance as Eq.~11!. This continuum
equation has¹4h and ¹2(“h)2 terms as the lowest order
The well-known Laplacian term¹2h and the nonlinearity
“(“h)3, associated with the Edwards-Wilkinson~EW! uni-
versality class, is essentially absent. The model with a s
metric hopping rate thus is described by the fourth or
continuum equation with a conservative noise.
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We prove analytically that the corresponding continuu
equation to the volume conserving surface models can
generally described by either Eq.~10! or Eq.~13!, depending
on the symmetry of hopping rate in the diffusion rules of t
model. The model introduced by Ra´cz et al. @13# satisfies Eq.
~10!, while the Sun-Guo-Grant model obeys Eq.~13! without
the nonlinearity¹2(“h)2 because this model obeys detail
balance and the symmetryh(x,t)→2h(x,t). The explicit
expression of both equations will be determined through
regularization procedure when the diffusion rules for
model are given.

III. VOLUME CONSERVING MODELS

To identify the result of the preceding section, we inve
tigate a simple discrete model suggested by Krug@14#. The
diffusion rule is as follows: A sitei is chosen at random. I
the surface configuration satisfies the condition

hi 11.hi or hi 21.hi , ~14!

then the particle at sitei is regarded as immobile, and a ne
site is chosen. If it does not, the particle at sitei is regarded
as a mobile one, no matter what the neighboring configu
tion is. In this model, any mobile particles are allowed to h
from an existing site to another site. Especially, a particle
a completely flat surface is always regarded as a mobile
ticle in order to generate a nonequilibrium contribution to t
surface diffusion process where no particles are deposite

As a discrete model forthe symmetric hopping rate, we
allow any mobile particle to hop to one of the nearest nei
bors randomly. The hopping rateswi

6 for this model can be
represented by a simple combination of the unit step func
u(x) as follows:

wi
65

1

2
u~hi2hi 21!u~hi2hi 11!. ~15!

Once hopping rateswi
6 are written by the step function, th

discrete functionhi has to be replaced by a smooth functi
h(x,t) with x5 ia at the macroscopic scale through a reg
larization procedure. Using the regularization proced
from the literature@2,3,5,6#, the step function can be approx
mated by an analytic shifted hyperbolic tangent functio
which is expanded in the Taylor series

u~x!511 (
k51

`

Akx
k, ~16!

whereA1.0, A3,0, . . . , andA2 ,A4 , . . . are very small
and negligible.

Combining Eqs.~5!, ~15!, and~16!, we obtain the follow-
ing continuum equation, up to the fourth order:

]h~x,t !

]t
52K¹4h1l22¹

2~“h!21hc~x,t !, ~17!

where the coefficients and the noise covariance are give

K5
a5

2t
A1 ,
e

e

-

a-

n
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e
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-
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-
e
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by

l225
a5

2t
~2A22A1

2!,

~18!

^hc~x,t !hc~x8,t8!&52
a5

t
¹2d~x2x8!d~ t2t8!,

up to O(a5). From the fact thatA1.0 andA2 is very small
and negligible, we haveK.0 and l22,0. This equation
corresponds to the conserved Kardar-Parisi-Zhang equa
with a conservative noise@12#. The predicted critical expo-
nents area5(22d)/3 and z5(101d)/3 for the substrate
dimension d @16#. The critical exponents are determine
through the surface widthW(L,t), which can be described
by the dynamic scaling form,W(L,t)5LaF(t/Lz). Here
L, a, z, andF are the system size, the roughness expon
the dynamic exponent (z5a/b,b is the growth exponent!,
and the scaling function, respectively. Simulation results
this discrete model are consistent with the predicted val
of exponents. See Ref.@14# for d51 and Ref.@15# for d
52 and 3.

As a discrete model forthe asymmetric hopping rate, we
allow a mobile particle to hop only to one of the neare
neighboring sites which has a lower height. In this way,
can break the symmetry in hopping rate. If both heights
the nearest neighbors are lower than that of the selected
one site is selected randomly among them. From these ru
the hopping rateswi

6 are given by

wi
65u~hi2hi 71!u~hi2hi 61!

1@12u~hi 612hi 71!1 1
2 d~hi 612hi 71!#. ~19!

Since the above hopping rateswi
6 contain ad function, we

will employ another regularization function@4#:

u~x!5 (
k50

`

Akx
k, ~20!

whereA0P(1/2,1), A1.0, andA2,0. This choice can dis-
tinguish the situations where the argument of the step fu
tion is zero.

From Eqs.~5!, ~19!, and ~20!, we obtain the stochastic
continuum equation, up to the fourth order, as follows:

]h~x,t !

]t
5n¹2h2K¹4h1l22¹

2~“h!2

1l13“~“h!31hc~x,t !, ~21!

with the same noise covariance as Eq.~18!. The coefficients
are given by

n5
4a3

t
A0

2A1 ,

K52
a5

6t
~8A0

2A123A0A1!, ~22!

l225
a5

2t
~2A0A22A1

224A0A1
2!,
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l135
2a5

t
~8A0

2A31A1A214A0A1A222A1
3!.

By using the conventional regularization function, Eq.~16!,
we can also obtain the same continuum equation with
coefficients if we letA051 in Eq. ~22!. However, for the
model with the asymmetric hopping rate which containsd
function, the use of regularization function Eq.~20! is proper
because the regularization function Eq.~16! does not allow
us to define thed function @4#.

SinceA0P(1/2,1), A1.0, andA2,0, we haven.0, K
,0, l22,0, andl13,0 so that the dynamic scaling beha
ior is determined solely by the Laplacian term with a posit
coefficient. The model for an asymmetric hopping rate
longs to the same universality class as that of the EW eq
tion with a conservative noise. The critical exponents
given asa52d/2 andb52d/4 @17#. Note that the values
of the growth (b) and the roughness (a) exponents are
negative in all substrate dimensionsd, so that the surface is
in fact flat. More information for the negative exponents c
be found elsewhere@15,18#.

IV. SUMMARY

We have studied the effect of symmetry on volume co
serving surface models, where the total number of particle
conserved at every moment. We obtained the stochastic
,

e

-
a-
e

n

-
is
n-

tinuum equation through the master equation approach.
then showed that the form of continuum equation depends
the symmetry of hopping rate in the stochastic diffusi
rules. In the discrete model with symmetric hopping rate,
resulting continuum equation does not possess a Lapla
term, but it is the nonlinear fourth order continuum equati
with a conservative noise. If the symmetry in hopping rate
broken, a Laplacian term appears in the correspond
Langevin equation. In this case, if the coefficient of the L
placian term is positive, the Laplacian term will be releva
so that the asymptotic scaling behavior of the model belo
to that of the EW equation with a conservative noise. A
specific example, we investigated a simple discrete mo
@14,15# analytically. From the diffusion rules of the mode
we explicitly derived two corresponding continuum equ
tions; the conserved Kardar-Parisi-Zhang equation with
conservative noise for the model with symmetric hoppi
rate, and the Edwards-Wilkinson equation with a conser
tive noise for the model with asymmetric hopping rate.
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